*** QUALITATIVE ANALYSIS ***

Theory and Laboratory Notes

EVERYONE IS ON HIS OWN-- NO PARTNERS!

THE FLOW SHEET IS REQUIRED.

HOT WATER

Tap Water Bath for Warming Test Tubes.

Distilled water test tube placed inside water bath.

NEVER ADD WATER TO A HOT BEAKER

REAGENT RACKS--

Write location numbers on your flow sheet.

DOUBLE CHECK LABELS, NEVER USE THOSE ON OTHER TABLES,

BOTTLES MUST BE EITHER IN YOUR HAND OR IN THE RACK!!!

REFILL-- ** TRIPLE CHECK LABELS ** !!!!

CENTRIFUGE ACTION -- IN BALANCE !!!

WASHING PRECIPITATES AND EQUIPMENT--

DISTILLED WATER ONLY ----- Mix well, centrifuge, and decant.

THE LITMUS TEST--

Touch litmus to stirring rod and use many times. Recycle litmus paper.

Do not contaminate the rod on the sides of the test tube.

NO SOLIDS IN THE SINKS---OR YOU CLOG !!!

THIS INCLUDES MATCHES AND LITMUS PAPER.

THE SILVER GROUP

P-1 PRECIPITATION OF THE SILVER GROUP--

THE MEMBERS--

*** Ag, Hg, Pb ***

FACT-- The Chlorides are insoluble in cold water.

HCl, The group reagent supplies Cl⁻¹ ions to ppt:

... The ppts.

..... AgCl white

..... PbCl₂ white

..... Hg_2Cl_2 white

P-2 SEPARATION OF LEAD FROM SILVER AND MERCURY--

FACT-- Lead Chloride is soluble in HOT WATER.

 $PbCl_{2} ---> Pb^{+2} + 2Cl^{-1}$

P-3 DETECTION OF LEAD--

 \dots Add K_2CrO_4

Pb⁺² + CrO₄ ⁻² ----> PbCrO₄ Yellow SOLID!!! (not just a colour).

P-4 SEPARATION AND DETECTION OF SILVER AND MERCURY--

FACTS-- A) Silver Chloride dissolves in Ammonium Hydroxide. B) Mercurous Chloride reacts with Ammonium Hydroxide to form a black ppt.

Hg₂Cl₂ + NH₄OH ---> HgNH₂Cl black

C) Test for Silver-- Neutralize the alkaline NH₄OH solution with HNO₃ (litmus test)

WARNING -- CORRECT LITMUS TEST,

Ag⁺¹ + Cl⁻¹ ----> AgCl white

HERE ENDETH THE SILVER GROUP

THE COPPER GROUP

THE MEMBERS--

*** Pb, Hg(II), Bi, Cu, Cd, As, Sb, Sn ***

P-5 THE SEPARATION OF THE COPPER GROUP FROM ALL OTHERS--

FACT-- THE SULFIDES OF THIS GROUP ARE INSOLUBLE IN HCl.

THE GROUP REAGENTS--

... H_2O_2 To oxidize Sn^{+2} to Sn^{+4} for a better ppt. (Lower K_{sp}).

... HCl To prevent sulfides of other groups from forming.

... H₂S To supply sulfide ions to the cations.

COLOURS OF THE PRECIPITATES--

HgS black, CdS yellow, $\rm As_2S_3$ yellow, PbS black, CuS black, $\rm As_2S_3$ yellow, SnS yellow, $\rm Sb_2S_3$ orange.

P-6 SEPARATION OF COPPER SUBGROUP FROM ARSENIC SUBGROUP--

FACT-- $(NH_4)_2$ S DISSOLVES THE ARSENIC SUBGROUP SULFIDES.

AMMONIUM ACETATE IS ADDED TO COAGULATE PEPTIZED PPTS.

P-7 SEPARATION and DETECTION OF MERCURY--

A) HgS dissolves in AQUA REGIA Ooh, the royal water! HCl & HNO₃ Ah yaz.

B) Test for Mercury *deadly* REDOX reduces Hg⁺² to Hg (black ppt.)

P-8 THE SEPARATION and DETECTION OF LEAD--

A) $PbSO_4$ is INSOLUBLE in H_2SO_4 , but soluble in the HNO₃ from the AQUA REGIA.

DENSE WHITE FUMES, SO_{3 (s)}, prove the removal of HNO₃.

$$H_{2}SO_{4} - - > SO_{3(s)} + H_{2}O$$

They are from boiling H₂SO₄ at 338 °C.

Since HNO₃ boils at 130°C, it will have distilled off, and PbSO₄ can ppt.

B) Test for LEAD-- Add dichromate ion ---> PbCrO₄ yellow

P-9 SEPARATION AND DETECTION OF BISMUTH--

FACT-- THE HYDROXIDES OF Cu & Cd DISSOLVE IN EXCESS NH_4 OH. ** (Watch it here or be confused) **

TEST FOR BISMUTH--

REDOX Bi⁺³ ---> Bi black ppt.

P- 10 DETECTION OF COPPER AND CADMIUM--

** **WARNING** -- THE LITMUS TESTS-- DO NOT LET THE STIRRING ROD TOUCH THE SIDE OF TUBE!

A) DETECTION OF COPPER-- Add Fe(CN)₆⁻⁴ ----> Cu₂Fe(CN)₆ red

B) DETECTION OF CADMIUM-- Add S⁻² ----> CdS yellow ppt.

P-11 THE RE-PRECIPITATION OF THE ARSENIC GROUP SULFIDES--

FACT-- HCl is used to neutralize the alkaline $(NH_4)_2S$ from P-6

THE REEKING TUBE AND IRON SHARD of Kipling

AS ALWAYS NOTE THOSE COLOURS!!

P-12 SEPARATION OF ARSENIC FROM ANTIMONY AND TIN

FACT-- As₂S₃ is INSOLUBLE in HCl.

P-13 DETECTION OF ARSENIC -- Add $Ag^{+1} ---> Ag_3 AsO_4$ brown-red ppt.

(Alchemical symbol for Arsenic--The Hissing Adder....)

P-14 DETECTION OF ANTIMONY AND TIN--

A) Antimony-- REDOX ON A COIN

Any coin but penny-- Mossy Tin + Antimony

Sn + Sb⁺³ ----> Sn⁺² + Sb black stain

B) Tin-- Redox in a casserole

 $Al + Sn^{+4} - Al^{+3} + Sn$ grey ppt.

HERE ENDETH THE COPPER GROUP

THE ALUMINUM GROUP

MEMBERS OF THIS GROUP--

*** Al, Cr, Fe, Mn, Ni, Co, Zn ***

P-15 SEPARATION OF THE AL-NI GROUP FROM ALL OTHERS--

FACT-- THE HYDROXIDES AND SULFIDES ARE INSOLUBLE IN WATER.

THE GROUP REAGENTS--

... $\rm NH_4OH$ To supply $\rm OH^{-1}$ to ppt. hydroxides.

... $(NH_4)_2S$ To supply S⁻² to ppt. sulfides.

... $\rm NH_4Cl$ To prevent the precipitation. of $\rm Mg(OH)_2$ by *THE COMMON ION EFFECT* .. AH, The Principle of le Chatelier.

We do not want any $Mg(OH)_2$ forming here--(No milk of magnesia). It won't form unless $[OH^{-1}]$ is high,

Mg⁺² + 2OH⁻¹ ---> Mg(OH)₂

The OH^{-1} comes from $NH_4OH < ---> NH_4^{+1} + OH^{-1}$

So we add $NH_{4}Cl$ to increase the $[NH_{4}^{+1}]$,

$$NH_4Cl ----> NH_4^{+1} + Cl^{-1}$$

Hence: the NH_4^{+1} (The Common Ion) shifts the equilibrium of the Mg(OH)₂ equation to the left.

COLOURS OF THE PRECIPITATES OF THIS GROUP--

CoS black, NiS black, $Cr(OH)_3$ grey-green, FeS black, $Al(OH)_3$ white, ZnS white, Fe(OH)_3 red-brown, MnS, pink

WARNING: A COLOURED SOLUTION WILL BE CLEAR.

NOTE: A CLEAR SOLUTION MAY BE COLOURED. It means NO ppt. As in a clear green solution, or a clear blue sky.

P-16 SEPARATION OF ALUMINUM SUBGROUP FROM NICKEL SUBGROUP--

FACT-- ALUMINUM GROUP HYDROXIDES ARE AMPHOTERIC and therefore dissolve in excess base (NaOH).

Amphoteric--acts like acid in strong base, hence it reacts (acid + base ----> a salt + water).

P-17 SEPARATION AND DETECTION OF IRON--

```
FACT-- EXCESS NH4OH DISSOLVES ALL BUT Fe(OH)3.
```

TESTS FOR IRON--

A) add KSCN ----> Fe(SCN)₆⁻³ blood red proves ion Ah, the hexathiocyanatoferrate III ion.!

B) add $\underset{4}{\text{KFe}(\text{CN})_6} \xrightarrow{--->} \text{Fe}_4[\text{Fe}(\text{CN})_6]_3$ PRUSSIAN BLUE blood blue ppt.

WARNING -- Very sensitive test-- DO NOT REPORT IRON UNLESS THESE TESTS ARE STRONG !

P-18 SEPARATION AND DETECTION OF MANGANESE--

A) MnS dissolves immediately in HCl

B) Add BiO₃⁻¹ BIG REDOX Balance:

 $2 \text{ Mn}^{+2} + 5 \text{ BiO}_3^{-1} + 14 \text{ H}^{+1} ---> 2 \text{ MnO}_4^{-1} + 5 \text{ Bi}^{+3} + 7 \text{ H}_2\text{O}$

The purple permanganate ion.

P-19 DETECTION OF NICKEL AND COBALT--

A) NICKEL TEST--

Add Dimethyl glyoxime ($\rm NiC_8H_{14}N_9O_4$) ---> red ppt.

B) COBALT TEST--

add NaF and $NH_4SCN ---> Co(SCN)_4^{-2}$ blue solution, Ah, the tetrathiocyanatocobaltous II ion.

P-20 DETECTION OF ALUMINUM--

Add ALUMINON ---> Red colour.

P-21 DETECTION OF CHROMIUM AND ZINC--

A) Chromium-- Oxidize to CrO_5 blue in the ether layer.

B) Zinc-- Add K_4 Fe(CN)₆ ----> Zn_3K_2 [Fe(CN)₆]₂ a white ppt.

HERE ENDETH THE ALUMINUM GROUP

THE BARIUM GROUP

THE MEMBERS--

*** Ca, Ba, Na, K, Mg, NH₄⁺¹ ***

P-22 DETECTION OF AMMONIUM--

Add strong alkali, NaOH ----> NH₂ (ahhhh, ammonia gas) detect NH₂ by

... a) odour

... b) changes moist red litmus to blue

WARNING ---- DON'T ALLOW THE LITMUS TO TOUCH THE TUBE!

P-23 PRECIPITATION OF CALCIUM AND BARIUM--

Add carbonate ----> CaCO₃ white and BaCO₃ white

P-24 DETECTION OF BARIUM-- Flame test GREEN.

WARNING --- DON'T SCRUNTCH THE TEST WIRE! OR YOU BURN!

P-25 DETECTION OF CALCIUM-- Flame test ORANGE-RED

P-26 DETECTION OF MAGNESIUM-- Add PARANITROBENZENEAZORESORCINOL ----> The flocculent blue lake ppt. (nee nee).

P-27 DETECTION OF SODIUM AND POTASSIUM--

A) SODIUM-- Flame test-- BIG FLUFFY YELLOW yaz.

B) POTASSIUM-- Flame test-- QUICK FLASH OF VIOLET observed thru blue glass.

HERE ENDETH THE BARIUM GROUP